Fire and Emergency Services Company Officer

When a firefighter, driver/operator, or emergency medical technician (EMT)-paramedic assumes the role of company officer, a transition occurs that is one of the most challenging within the fire and emergency services. Although the promotion from one position to the next may be immediate, the transition is not. The transition from follower to supervisor occurs over time and requires many personal changes and adjustments. Making the transition requires that a new company officer know the following elements:

1. Importance of the position of company officer
2. Responsibilities of a company officer
3. Duties of a company officer

Importance of the Company Officer

Company officers perform critically important roles in the fire and emergency services. These roles are important to the personnel they supervise, the administration they support, and the public they serve. The company officer is often the first and, in some cases, only contact with the fire department that external customers may have in their lifetimes. Therefore, a first impression made by a company officer may make or break the organization’s reputation.

Recognizing the importance of the position and its responsibilities is critical to performing the duties of a company officer. Filling the position requires leadership talents, ethical qualities, and supervisory skills that many new officers will have to develop.

As a supervisor, the company officer is much like a parent figure to the members of the unit. The company officer performs the following functions:

1. Leadership
2. Management
3. Supervision
4. Accountability
5. Personal responsibility

In Speaking of Fire, Fred Stowell notes that effectively filling the role of company officer “… requires leadership talents, ethical qualities, and supervisory skills …,” and he goes on later to note that providing that leadership is the first in an extensive list of necessary functions in order to be effective in the position. Wise stuff.

All too often I believe we view the company officer more in terms of supervisor or technical expert, often at the expense of developing him/her as a leader. And yet day in and day out there is no other position within our departments that impacts our ability to deliver service more effectively and safely than company officers. Similarly, to not dedicate the appropriate time and resources to develop our company officers as leaders only serves to deny our organizations an effective pool of chief level officers ready to assume top leadership positions, and equally those who serve below the company officer the opportunity to be more effectively mentored and prepared for their own advancements.

In Leadership on the Line, Heifetz and Linsky note the incredible dangers associated with leading, both for the leader and for the organization where leadership is absent. And it goes without saying that ours continues to be a dangerous profession. Remember, the first Firefighter Life Safety Initiative notes the need to “Define and advocate the need for a cultural change within the fire service relating to safety; incorporating leadership, management, supervision, accountability and personal responsibility.”

There it is again — leadership. As we continue to debate and work towards reducing firefighter deaths and injuries, nowhere can we be more successful than to focus on leading that change in our culture at a point where it can have the most impact — that point where our culture truly exists through members at the interface with those we serve — at the company level. That means that it is time to develop leaders at that point as well through developing the leaders that are our company officers.
Teaching Psychomotor Skills in the Fire Service
By Steven W. Edwards, Ph.D.
Oklahoma State University & Ingalls (OK) FD

Most of the principles of teaching and learning that we’ve all been taught in the fire service come from the classroom setting. They are relevant for cognitive learning but not necessarily for learning psychomotor skills. There is another entire body of teaching and learning principles that are unique to psychomotor skills — the “hands-on” skills that are so fundamental to fire fighting. These principles come from an academic discipline known as motor learning. Most of these principles and practices were developed with sports skill learning in mind, but they are directly applicable to other disciplines, including the fire service. Some of these ideas are presented below, but there are many more fundamental ideas that could be presented.

The Stages of Motor Skill Learning
Motor skill learning is defined as “a set of internal processes, associated with practice or experience, leading to relatively permanent changes in skilled movement behavior.” We know that after exposure to a teaching and learning environment, learners change in a relatively permanent way so that they acquire the ability to faithfully reproduce certain movements when they so choose. This acquisition process occurs in well-defined steps or stages.

Cognitive Stage
The first stage is the cognitive stage. Sometimes called the verbal-motor stage, this is the initial point at which a learner makes his/her first attempts at producing the desired movement. This stage is very brief since most learners can make a successful attempt after only a few trials. Once the learner “gets the idea,” this stage ends. As instructors, we use several teaching strategies to assist learners at this stage. We use verbal explanations and descriptions of the movement in addition to live demonstrations of the movement to help the learner acquire the desired skill. The verbal explanations should match cue words and phrases to key parts of the skill. The person who demonstrates the skill can be almost anyone who can perform the skill correctly, but the demonstration must display one or more of the essential features of the skill. The instructor should check to see that the learners pay attention during the explanation and demonstration. Remember that a picture is worth a thousand words, so keep the explanations brief.

continued on page 4
The company officer is responsible for company level training and ensuring that all personnel are proficient in the duties assigned to them.

The company officer is also expected to administer policies, rules and regulations, and enforce them when necessary. The new roles of supervisor and representing the administration to the unit require the ability to lead in a way that provides sound results such as high unit efficiency, effectiveness, and morale.

Research indicates that the public has greater contact with members of local government than with any other government level. The company officer and members of a unit are the first direct contacts the public will have with their local fire and emergency services. Many times, that contact occurs when members of the public are experiencing their worst day.

In the company officer, the public sees and judges the entire organization. How that initial contact develops and the results of it are crucial to the impressions that the public will have of the organization.

Responsibilities
Regardless of the fire officer level or the type of fire and emergency services organization, all company officers have certain responsibilities to the following people or groups:

- **Subordinates** — Provide primarily a safe work environment by adhering to and enforcing safety regulations; also represent the needs of subordinates to the organization and provide the following elements so that subordinates are effective as individuals and as a team:
 - Ethical leadership
 - Fair and just supervision
 - Educational and training opportunities

- **Organization** — Administer properly all policies and procedures of the organization; represent the organization to members of the unit and the public.

- **Public** — Provide effective and efficient professional service to the public. Be conscious of the fact that the public provides resources to the organization and that officers are stewards of those resources.

- **Profession** — Serve as visible representatives and role models, like all members of the fire and emergency services. The public and the organization’s members judge the profession by the actions of its officers.

- **Family** — Listen to expectations and needs when relying on families for support and understanding; communicate the responsibility, authority, and requirements of the new position.

- **Themselves** — Live by a set of ethical standards and values that are based on the accepted moral values of the community if expecting subordinates to live by them too. Respect themselves and abide by their convictions if they expect the same from others.

Duties
By understanding their responsibilities and the people they are responsible to, company officers will be able to perform the duties that are assigned to them. According to NFPA 1021, Standard for Fire Officer Professional Qualifications (2003), the duties of a company officer may be divided into general categories that apply to all fire officer levels (I through IV). The IFSTA **Chief Officer** (2nd edition) manual contains information on these categories as they apply to the Level III and Level IV Fire Officers while this manual addresses Level I and Level II. The categories are as follows:

- Human resources management
- Community and government relations
- Administration
- Inspection and investigation
- Emergency service delivery
- Health and safety

Each category is further divided into job performance requirements (JPRs) that guide the officer in the performance of the duties. Within each JPR are requisite knowledge and skills used to create officer training programs, establish evaluation and promotional criteria, and create learning objectives like those found at the beginning of each chapter in the manual. Besides the duties delineated in NFPA 1021, additional duties may be assigned to the company officer.

Summary
The company officer holds a position that is unique in the fire and emergency services and supervisory positions in general. As a member of a unit, the officer must perform the same tasks that other members perform such as donning personal protective equipment (PPE), advancing hoselines, searching for victims, or administering medical care.

At the same time, the company officer is a member of management performing the functions of a first-level supervisor such as evaluating personnel, providing training, and developing budget requests to name just a few duties. The company officer is also a representative of the unit to the administration, the administration to the unit, and the organization to the public.

In each of these roles, an officer must make decisions, act ethically, and apply supervisory and management skills to provide a professional service to the public and members of the unit. Finally, the company officer must understand and adhere to acknowledged standards of leadership. Leader, supervisor, manager, and unit member are all roles that a company officer must learn effectively and simultaneously.

The IFSTA **Fire and Emergency Services Company Officer**, 4th Edition, manual provides the information necessary to successfully make the transition to company officer. Each JPR for Fire Officer I and II certification is addressed in the manual. Additional information on topics such as leadership, ethics, and decision-making are also discussed.

Fred Stowell is a Senior Technical Editor for Fire Protection Publications.
Associative Stage
The second stage of skill learning is the associative stage. At this point the learner practices the newly acquired skill with the intent of achieving accurate and consistent performance. He/she is literally pulling together the various parts of the skill. As instructors, we use various teaching methods and styles to assist the learner. Sometimes learners work alone and at other times learners work in small groups with the goal of getting better and better at performing the skill. The main role of the instructor at this stage is to provide feedback to the learner about his/her progress. Details about how to use feedback appear below. As the learner advances he/she learns to eliminate extraneous movements and minimize the errors associated with the movement.

The Use of Feedback
Feedback is defined as “the information students receive about their performance.” Without feedback, learning is practically nonexistent. As instructors, it is our job to provide feedback to learners in an attempt to assist them with skill acquisition. The feedback serves three main functions: motivation, reinforcement, and error correction.

Reinforcement
An instructor’s second option for feedback is using the feedback for reinforcement purposes. Basic psychology tells us that an event that is followed by something positive will increase the likelihood that that specific event will occur again. Said another way, actions followed by rewarding consequences tend to be repeated. As instructors, when we see a learner do something correctly, we can say or do something that lets the learner know that he/she has performed the skill (or a part of the skill) correctly. This positive reinforcement is a powerful learning tool, and we should make sure that learners receive positive reinforcement on a regular basis. Oddly enough, negative reinforcement is also an effective learning tool. An event that is followed by something negative will decrease the likelihood that that specific event will occur again. When a learner does something incorrectly, then it is permissible to point out the error. However, this creates a somewhat negative environment and some learners may feel embarrassed or ashamed of their performance. Therefore, it’s good advice to balance positive and negative reinforcement in feedback presentations. Rely more on positive reinforcement and use negative reinforcement judiciously.

Error Correction
It has been suggested that the third function of feedback is the most important one, that is, feedback as error correction. Ultimately we want our learners to perform the skill correctly; therefore, it is important to get to the point where no errors are made while executing the skill. When we give error correction feedback, we stress proper technique and proper fundamental movement patterns. Many intermediate and advanced learners have acquired good error detection skills, but lack error correction capability. Therefore, it is the instructor’s job to be knowledgeable about correct technique and make sure that each learner exhibits good technique.

Finally, there exists the question about how much feedback to give to learners. Research shows that the optimum amount of feedback is feedback on about 50% of the trials. It is not advisable to give feedback after every trial, that is, 100% feedback. Also, feedback should be faded, that is, give more feedback early in the learning process and less feedback later in the learning process so that, in the end, the learner has received feedback on about one-half of the trials.

Summary
Be aware of where each learner is in terms of the stages of learning and use the appropriate techniques associated with each stage. Use feedback for motivation, reinforcement, and correction and try to provide more feedback in the early stages of learning and less feedback in the later stages of learning.

Dr. Edwards is a professor in the School of Applied Health and Educational Psychology at Oklahoma State University. He completed graduate studies at Purdue University and has been teaching and conducting research in higher education for 30 years. His areas of expertise include exercise and sport psychology, research design and statistics, psychometrics, and measurement and evaluation. He has numerous national and international publications and presentations and is nationally recognized for his work in the psychology of physical activity and exercise. He is a captain and the training officer with the Ingalls Fire District in Payne County, OK. He is trained as an EMT-B and consults nationwide in the fire service in the areas of both knowledge and psychomotor skill testing.
On January 13, 2007, in Washington, D.C., the National Fallen Firefighters Foundation (NFFF) convened a think tank to begin development of an action plan to reduce firefighter line-of-duty deaths and injuries through proactive, improved fire prevention efforts throughout the United States. One hundred members of the fire service and related safety groups attended, including fire department prevention officers, fire marshals, public fire safety educators, fire protection engineers, and burn professionals. The Fire Prevention Mini-Summit was an important step in the process of creating a direction for implementing the fire prevention, life safety, codes, and public education components of the 16 Firefighter Life Safety Initiatives.

Attendees were split into interactive task groups in the areas of fire prevention, fire research, codes and standards, burn care, and technology. The groups based their work plans on recommendations from the America Burning Revisited report that were never implemented. “America Burning Revisited contained some excellent proactive fire prevention material that, for the most part, has not been actualized. This worked well as our starting point,” said Richard Anderson, project director for the Life Safety Initiatives team. “We also moved some people into groups outside of their areas of expertise so that we’d get some cross-pollination of thought, and that worked well, too.”

Group recommendations, in general summary, included:

Prevention: Elevate the role of prevention (all hazard) in the fire department mission. Increase the credentials of prevention public educators. Market prevention using programmatic messages to key audiences, including national, local, internal, external, and public policy makers to increase awareness so necessary resources can be obtained to reduce incidents and their severity.

Fire research: Set agenda for research into fire and other risks for which the fire and emergency services community has responsibility. Establish a reasonable set of priorities for fire issues, including issues connected with building codes and standards.

Codes and standards: Advocate codes that address firefighting safety, including the requirement for the installation of home fire sprinklers. Develop a long-term implementation strategy for fire sprinklers and effective smoke alarms in residential occupancies.

Burn care: Support caregiving and expand the capability to manage all aspects of burn-related issues.

Technology: Utilize cause-oriented technologies in the reduction of fire incidents and their severity to include fire-safe cigarettes, flame retardant furniture, and cooking safety devices, in addition to suppression technologies to control fire growth. Utilize active technologies to provide enhanced early warning technologies.

The action plan for implementing these general recommendations included specific actions to be taken at the local and national levels. The groups also identified deliverables and estimated timeline and necessary resources, created a risk management plan that identified risks and barriers to completion and a means to manage or overcome them, and designated who should be responsible for actions.

These recommendations will be delivered to participants of the Life Safety Initiatives National Summit this March, during which they will be considered, refined, and finalized as a blueprint for implementation of the initiatives.

On March 3-4, 2007, 300 fire service leaders will meet, by invitation, at Fireman’s Fund Insurance Company Headquarters in Novato, California, for the second National Line-of-Duty Death Prevention Summit, conducted by the National Fallen Firefighters Foundation and the Everyone Goes Home™ Firefighter Life Safety Initiatives Program team.

The meeting follows the historic summit held in Tampa in 2004, which resulted in the 16 Firefighter Life Safety Initiatives. Since then, the NFFF fully implemented the Everyone Goes Home™ Firefighter Life Safety Initiatives Program and strategic objectives to promote and support the initiatives, including production and distribution of the Firefighter Life Safety Resource Training Kit, the national Everyone Goes Home™ Advocates Program, the Courage to be Safe training program, and other important programs.

However, since the 2004 Summit, more than 200 firefighters have died in the line of duty and thousands of firefighters have been critically injured; clearly, there is more work to be done. The purpose of this second National LODD Prevention Summit is to develop a work plan for implementation of the 16 firefighter life safety initiatives by conducting a think-tank forum that leverages the talents and ideas of fire service leadership. The goal of the summit will be to produce a plan that can be utilized by all fire departments to implement the 16 firefighter life safety initiatives to reduce line of duty injuries and deaths.

NFFF PLANS “The America’s Fire Heroes Whistle-Stop Tour”

Whistle-stop tour is an expression used to refer to political campaigns, especially in the United States’ after World War II, where candidates covered a vast amount of territory in a train, at a fast pace, in order to bring their message to the public. The most famous whistle-stop tour in U.S. history was Harry Truman’s 1948 re-election whistle-stop where he traveled over the western and midwestern United States, traveling 30,000 miles aboard his train, Magellan. Many observers credit his re-election to this whistle-stop tour.

The National Fallen Firefighters Foundation (NFFF) seeks to use the format of the whistle-stop tour to increase both firefighter and public awareness of its premier program, Everyone Goes Home (EGH). Developed in response to the alarming rate of preventable firefighter line-of-duty deaths (over 100 per year), the NFFF developed the EGH program to support the United States Fire Administration’s goal of reducing firefighter deaths by 50% over the next ten years. In an unprecedented gesture of solidarity, virtually every major fire service organization had input regarding the EGH program via a series of major and minor subject-matter summits.

The “America’s Fire Heroes Whistle-Stop Tour” will spotlight the important role firefighters play in our communities and advocate the importance of communities becoming involved in a grassroots Everyone Goes Home campaign to help further the cause of firefighter life safety through understanding and support of resources. In addition, the Courage to Be Safe So Everyone Goes Home™ program will be presented in every stop along the way. Whistle-stop cities planned include San Francisco, Sacramento, Los Angeles, Dallas, St. Louis, Phoenix, Chicago, Nashville, Miami, Tampa, Atlanta, Charlotte, Washington, D.C., Philadelphia, New York, Hartford, Providence, and Boston.

To learn more about the Firefighter Life Safety Initiatives Program, please visit www.everyonegoeshome.com
Fire Service Hydraulics and Water Supplies: Preparing a New Generation of Fire Service Professionals

By Michael A. Wieder, CFPS, MIFireE

For most students, in most disciplines, the most unappealing part of their course of study is anything having to do with mathematics. For some unknown reason, beginning with the earliest stages of the secondary education process, students question the need and practicality of courses such as algebra and calculus. “Why do we have to learn this stuff? We’ll never do it in real life.” These are statements that teachers have come to loathe.

The truth of the matter is that mathematics is all around us in our everyday lives. Whether it is balancing our checkbooks, determining how much grass seed is needed to overseed a portion of our yard, or figuring out how many miles per gallon our vehicle is getting, we use math, in some form, every day.

The fire protection educational process and profession is no different in this respect. I have witnessed this personally, as a student, as a practitioner, and as an instructor. Most students and practitioners love the courses or duties that involve fighting fire, ripping cars apart, and the like. They all disdain applied mathematics courses, such as strengths of materials, statics, fluid mechanics, and hydraulics. However, just as in all other aspects of life, there is no getting away from mathematics in fire protection. Anyone who is going to progress anywhere beyond being an entry-level “tailboard” firefighter will have to be proficient in mathematics of varying types and degrees.

The first promotional step above firefighter, in most fire departments, is that of becoming a driver/operator. When it is all boiled down, the driver/operator has two primary functions for which they are responsible: safely driving the apparatus to and from incidents and utilizing the apparatus to its maximum effectiveness while the apparatus is positioned at the emergency scene. For driver/operators who operate fire apparatus equipped with a pump, their primary on-scene duty will be to supply water at a sufficient pressure and volume to achieve the tactical goals of the incident.

Though the fire service has seen enormous advances in technology in recent years, its basic premise has not changed. We still primarily attack fires with water, there will be a need to do computations such as pressure loss calculations, required fire flows, and determining pump discharge pressures. Although apparatus and equipment manufacturers would lead us to believe that fire trucks and their pumps basically operate themselves these days, this is certainly not the case. While modern electronic devices, such as pressure regulators and flowmeters, do make the job easier, there is no getting away from the fact that apparatus driver/operators and fire officers must still have a sound working knowledge of fire service hydraulics. These skills will be used in preincident planning and on the emergency scene. As long as we are still fighting fires with water, there will be a need to do computations such as pressure loss calculations, required fire flows, and determining pump discharge pressures.

The difference between a “lever-puller” and a true fire service professional is an understanding of the science and theory that support their actions. A lever-puller knows how to get water out of a pump and into a hose line. A professional knows why we are doing it, how the pump works, and how to ensure that the appropriate volume and pressure are being supplied.

Fire Service Hydraulics and Water Supply was written for the purpose of assisting students in becoming professionals in the area of fire service hydraulics. This text not only explains how various equipment or equations work, but also why they work and why we need to know them. Both fire equipment design and the theory of hydraulics have benefited from modern technology. Every effort is made by this text to provide the student with the most modern, efficient, and simplest manner of performing the task at hand. In some cases the old methods are explained simply to ensure that the student sees how much better off we are today.

The information contained in Fire Service Hydraulics and Water Supply is designed to meet the objectives put forth in the model course outline for Fire Protection Hydraulics and Water Supply as established by the Fire and Emergency Services Higher Education (FESHE) initiative led by the United States Fire Administration (USFA). This initiative brings together leaders in fire service higher education for the purpose of establishing model core curricula for Associate’s, Bachelor’s, and Master’s level fire service degree programs. It is hoped that this initiative will encourage growth in the fire service higher education field and support commonality of the information that is taught to all of the students.

The fire service has had standards for various levels of vocational competence established for more than a quarter of a century. These standards were initially developed by the National Professional Qualifications Board and today are maintained by the National Fire Protection Association. However, until the USFA started the FESHE initiative, there was little consistency to higher education programs throughout the United States. It is hoped that these institutions of higher education will embrace this initiative in the same manner that training institutions and fire departments embrace the professional qualifications standards. The USFA must be commended for taking this important step for the good of the fire service.

There are a number of excellent manuals on the market that explain fire protection hydraulics in an appropriate manner for fire protection engineering
and engineering technology students. *Fire Protection Hydraulics and Water Supplies* by Oklahoma State University Professor Pat D. Brock (also available from Fire Protection Publications) is perhaps the best ever written, and Professor Brock is without a doubt the finest hydraulics instructor in the nation. Accordingly, there are also excellent books aimed specifically at the driver of fire department pumping apparatus. The IFSTA *Pumping Apparatus Driver/Operator Handbook* is the industry leader in that market.

However, prior to the development of *Fire Service Hydraulics and Water Supplies*, no single book had put together both the scientific principles of hydraulics with the practical aspects of every day fire department operations. The developers of the FESHE model course outline for hydraulics had that combination in mind, and the new textbook delivers it in that manner. Topics covered by *Fire Service Hydraulics and Water Supply* include:

- Water as an Extinguishing Agent
- Water at Rest: Hydrostatics
- Water in Motion: Hydrokinetics
- Water Distribution Systems
- Water Flow Analysis
- Calculating Required Fire Flows
- Apparatus Equipped with a Fire Pump
- Fire Service Pump Design

- Fire Department Pumper Testing
- Types of Fire Streams
- Fire Hose Nozzles
- Principles of Fire Service Pressure Loss Calculations
- Determining Pump Discharge Pressure
- Relay Pumping
- Supporting Sprinkler and Standpipe Systems

In order to assist instructors in using this manual in a classroom course, Fire Protection Publications has also developed an instructor guide disk to accompany this manual. The guide disk includes class outlines, PowerPoint® presentations, and test questions. The outlines and test questions are provided in Microsoft Word® so they can easily be adjusted by the instructor if so desired.

Fire Protection Publications is privileged to publish the two most definitive hydraulics textbooks on the market today. *Fire Protection Hydraulics and Water Supplies* by Pat Brock is the definitive book for fire protection systems and engineering type degree programs. On the other hand, *Fire Service Hydraulics and Water Supply* meets the needs of degree programs that are more fire service operationally oriented and that also seek to meet the course requirements developed by FESHE. Both are evidence of Fire Protection Publication's commitment to developing outstanding materials to be used in the preparation of tomorrow's fire protection professionals.

About the author: Mike Wieder serves as Assistant Director and Managing Editor at Fire Protection Publications. He is the author of *Fire Service Hydraulics and Water Supply*, which is one of the more than 30 books and government reports he has authored since 1984. He holds undergraduate and graduate degrees in fire protection, safety, and adult education. Contact the author at mwieder@osu.fpp.org or 405-744-4255.
ENTRY FORM
2008 IFSTA/FPP Calendar Photo Contest

Fill out and mail with entries to: IFSTA/FPP CALENDAR CONTEST • OKLAHOMA STATE UNIVERSITY
FIRE PROTECTION PUBLICATIONS • 930 N. WILLIS • STILLWATER, OK 74078-8045

PLEASE TYPE OR PRINT CLEARLY:

Name
Mailing Address
City __
State __________________________ Zip __________________________

Home Phone (_____) __________ Office Phone (_____) __________

I understand that all entries are nonreturnable. By entering these photographs in the IFSTA/FPP Calendar Photo Contest, I am acknowledging that I understand and agree to the terms stated in the contest announcement. Fire Protection Publications has the right to make any reasonable and proper use of the photograph(s) as they deem fit, so long as each use of the photograph is credited to me. For each photograph selected for future use by FPP, I will be compensated by a one-time payment of no less than $100 at the time of first use, with no further compensation for subsequent uses of the same photograph. Unused photographs are not eligible for compensation of any kind.

I affirm that I am the legal owner or representative of the legal owner of all photographs I have submitted for this contest and that I have the permission of the owner to enter this contest and to take credit for and receive any prizes or remuneration for any winning entry.

Signature ___
Date __

ENTRY INFORMATION
(Complete a separate form for each photo submitted. This form may be photocopied for use as many times as needed.)

Entry No.: _______________ Description: __

Camera Information (Please fill out as completely as possible.) Type of Camera (Brand, Model, etc.) __

Lens Used________________ Film Brand________________ ASA/DIN________________ Aperture________ Shutter Speed____________

Number of Prints Entered ____________ Number of Slides Entered ____________ Number of Digital Photos Entered ____________

ENTRY DEADLINE
All ENTRIES must be postmarked no later than midnight, Friday, June 29, 2007